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Artificial bee colony (ABC) is a recently proposed optimization technique which has shown
to be competitive to other population-based stochastic algorithms. However, ABC is good
at exploration but poor at exploitation because of its solution search strategy. Thus, to
obtain an efficient performance, utilizing different characteristics of solution search strat-
egies can be appropriate during different stages of the search process to achieve a tradeoff
between exploration and exploitation. In this paper, we propose a novel multi-strategy
ensemble ABC (MEABC) algorithm. In MEABC, a pool of distinct solution search strategies
coexists throughout the search process and competes to produce offspring. Experiments
are conducted on a set of commonly used numerical benchmark functions, including the
CEC 2013 shifted and rotated problems. Results show that MEABC performs significantly
better than, or at least comparable to, some well-established evolutionary algorithms.

� 2014 Elsevier Inc. All rights reserved.
1. Introduction

Optimization problems exist in various engineering and science areas, such as structural design, scheduling, portfolio
investment, and economic dispatch. As the complexity of problems increases, traditional optimization algorithms may
not satisfy the problem requirements and more effective algorithms are needed. In the past decades, some swarm
intelligence algorithms, inspired by the social behaviors of birds, fish or insects, have been proposed to solve NP-complete
optimization problems [8], such as particle swarm optimization (PSO) [29], ant colony optimization (ACO) [10], artificial bee
colony (ABC) [22], cat swarm optimization (CSO) [5], and firefly algorithm (FA) [64]. A recent study has shown that ABC
performs significantly better, or at least comparable to other swarm intelligence algorithms [23]. Due to ABC’s simple
concept, easy implementation yet effectiveness, it has become popular in evolutionary optimization community.

ABC is a new optimization algorithm developed by Karaboga in 2005 [22], which simulates the foraging behavior of honey
bees. Although ABC has shown a good performance over many optimization problems, it converges slowly, especially at the
middle and last stages of the search process. The main reason is that ABC is good at exploration but poor at exploitation [71].
An ideal optimization algorithm should properly balance exploration and exploitation during the search process [14].
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Initially, the algorithm should concentrate on exploration; as iteration increases, it would be better to exploit to find more
accurate solutions. However, it is difficult to determine when the algorithm should switch from an explorative behavior to an
exploitative behavior.

In order to balance the exploration and exploitation of ABC during the search process, this paper proposes a multi-strategy
ensemble ABC (MEABC) algorithm. In MEABC, different characteristics of solution search strategies are employed to construct
a strategy pool. Initially, each food source (solution) is randomly assigned a solution search strategy from the strategy pool.
When searching a food source, each bee generates offspring according to the assigned strategy of the food source. During the
search process, the strategy for each food source is dynamically changed according to the quality of new generated candidate
solutions. Thus, bees use different search strategies to find new food sources (solutions) and utilize variant search character-
istics. The population may consist of explorative bees as well as exploitative bees simultaneously. Experimental studies are
conducted on a set of benchmark functions. Simulation results demonstrate the efficiency and effectiveness of the proposed
approach.

The remainder of the paper is organized as follows. Section 2 briefly introduces the background and related works. In
Section 3, we describe the multi-strategy ensemble approach. Experimental results and discussions are presented in
Section 4. Finally, the work is concluded and summarized in Section 5.

2. Background review and related work

2.1. Artificial bee colony algorithm

The ABC algorithm is a population-based stochastic algorithm that starts with an initial population of randomly generated
bees. The bees are categorized into three groups: employed bees, onlooker bees, and scout bees. The employed bees search
their food sources and share the information about these food sources to recruit the onlooker bees. The onlooker bees make a
decision to choose a food source from those found by the employed bees, and then further search the food around the
selected food source. The food source that has more nectar amount (fitness value) will has a higher probability to be selected
by the onlooker bees than one of less nectar. The scout bees are translated from a few employed bees, which abandon their
food sources and randomly search new ones [71].

For a search problem in a D-dimensional space, the position of a food source represents a potential solution. The nectar
amount of a food source is the fitness value of the associate solution. Each food source is exploited by only one employed bee.
The number of employed bees or the onlooker bees is equal to the number of solutions in the population.

Let Xi ¼ xi;1; xi;2; . . . ; xi;D be the ith food source (solution) in the population, where D is the problem dimension size. Each
employed bee generates a new food source Vi around the neighborhood of its parent position as follows:
v i;j ¼ xi;j þ /i;jðxi;j � xk;jÞ; ð1Þ
where i ¼ 1;2; . . . ; SN; SN is the population size, Xk is a randomly selected solution in the current population
ðk – iÞ; j 2 f1;2; . . . ;Dg is a random index, and /i;j is a uniformly distributed random number in the range ½�1;1�. If the
new food source Vi is better than its parent Xi, then Vi replaces Xi.

After all employed bees complete their searches according to Eq. (1), they share their information (nectar amounts and
positions of food sources) with the onlooker bees. An onlooker bee chooses a food source depending on the probability pi

related to its nectar amount (fitness value).
pi ¼
fiPSN
i¼1fi

; ð2Þ
where fi is the fitness value of the ith solution in the population. As seen, the probability pi is proportional to the fitness value.
The better a food source is, the higher chance to be selected.

If a food source cannot be improved further over a predefined number of cycles, the food source is considered to be aban-
doned. The value of the predefined number of cycles is another control parameter, called limit. Assume that the abandoned
source is Xi, then the scout bee randomly searches a new food source to be replaced with Xi. This operation is defined as
follows:
xi;j ¼ xmin
j þ randð0;1Þðxmax

j � xmin
j Þ; ð3Þ
where randð0;1Þ is a uniformly distributed random number in the range ½0;1�, and xmin
j ; xmax

j

h i
is the boundary constraint for

the jth variable.

2.2. ABC variants

Since ABC was introduced, it has become a popular optimizer and has widely been applied in practical problems. In the
past several years, many variants of ABC have been proposed. A brief overview of these variants is presented as follows.
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In order to investigate the performance of ABC, Karaboga and Akay [23] presented a comparative study on a large set of
numerical test functions. Results show that the performance of ABC is better than or similar to other population-based
stochastic algorithms, such as genetic algorithm (GA), PSO, differential evolution (DE), and evolution strategies (ES). As
mentioned before, ABC is good at exploration but poor at exploitation. To tackle this problem, some improved strategies have
been proposed. In [2], a chaotic ABC (CABC) algorithm is proposed by employing chaotic maps for parameter adaptation in
order to improve the convergence characteristics and prevent the ABC to fall into local minima. Kang et al. [21] proposed a
Rosenbrock ABC (RABC) algorithm by combining Rosenbrock’s rotational direction method with the original ABC. In RABC,
there are two alternative models, including the exploration model realized by ABC and the exploitation model completed
by the rotational direction method. Numerical results show that RABC is promising in terms of convergence speed, success
rate, and accuracy.

Inspired by PSO, Zhu and Kwong [71] proposed an improved ABC algorithm called gbest-guided ABC (GABC) algorithm,
which modified the solution search model by incorporating the information of the global best ðgbestÞ solution to improve
the exploitation. Experimental results show that GABC outperforms the original ABC on most of test functions. Unlike
GABC, Gao et al. [18] proposed another gbest ABC (ABC/best/1) inspired by DE. In the new algorithm, each bee searches
only around the best solution of the previous iteration to enhance the exploitation. Moreover, chaotic systems and oppo-
sition-based learning (OBL) are employed for population initialization and scout bees. Computational results show that the
new algorithm performs better than the original ABC and GABC. In [17], Gao and Liu proposed a modified ABC algorithm
(MABC). In MABC, a new solution search model, called ABC/best/1, based on the DE/best/1 mutation scheme is proposed.
Recently, Gao and Liu [16] introduced an enhanced MABC algorithm called IABC, in which two solution models, including
ABC/best/1 and ABC/rand/1, are employed based on the DE mutation schemes. A parameter p is introduced to control the
frequency of conducting ABC/best/1 and ABC/rand/1. Akay and Karaboga [1] modified the original ABC algorithm by
employing two new search models, including frequency and magnitude of the perturbation. The original ABC modified
only one dimension for producing a new solution, while the modified ABC introduced a control parameter that determined
how many dimensions to be modified. Results show that the original ABC can effectively solve basic functions, while the
modified ABC achieves promising solutions on hybrid complex functions. Rajasekhar et al. [46,47] proposed two versions
of ABC with Sobol and Levy mutation. Experimental results show the superiority of the mutation operations, especially on
high dimensional problems. In [30], Li et al. proposed an improved ABC algorithm called I-ABC, in which the best-so-far
solution, inertia weight and acceleration coefficients are utilized to enhance the search process. Results show that I-ABC
performs better than original ABC and GABC. El-Abd [12] embedded generalized opposition-based learning (GOBL) [61]
into the original ABC. Experimental results on the CEC 2005 benchmark functions show the good performance of the
new approach.

In [26], Karaboga and Akay firstly developed a new ABC method for symbolic regression. Simulation results show that the
new algorithm is very feasible and robust on the considered test problems of symbolic regression. Sabat et al. [49] presented
an application of ABC to extract the small signal equivalent circuit model parameter of metal extend semiconductor field
effect transistor (MESFET). Simulation results demonstrate the effectiveness of this approach. In [59], an interactive ABC
algorithm was applied to passive continuous authentication system.

The ABC algorithm was firstly proposed for unconstrained optimization problems. Recently, it was used to solve con-
strained optimization problems. In [25], Karaboga and Akay modified the ABC algorithm by employing Deb’s rules for han-
dling constraints. Sonmez [52] introduced an adaptive penalty function for ABC to solve truss structure optimization
problems. Results show that the new approach is a powerful search and optimization technique for structural design. Mez-
ura-Montes and Velez-Koeppel [39] proposed an elitist ABC to solve constrained real-parameter optimization problems. To
facilitate the production of feasible solutions, a dynamic tolerance for equality constraints was employed. Moreover, two
simple local search operators were applied to the best solution at certain times to obtain good solutions. Yeh and Hsieh
[66] proposed a penalty guided ABC algorithm to solve the nonlinearly mixed-integer reliability design problems. Simulation
results show that the best solutions achieved by the new ABC algorithm is better than the well-known best solutions found
by other heuristic methods. Manoj and Elias [37] applied the ABC algorithm to design a multiplier-less nonuniform filter
bank transmultiplexer. In [67], a new hybrid ABC (HABC) based on Taguchi method was proposed to solve the manufacturing
optimization problems.

For discrete optimization problems, some improved ABC algorithms have been designed. Singh [51] proposed a new ABC
algorithm for the leaf-constrained minimum spanning tree (LCMST) problem. Computational results demonstrate the supe-
riority of the new ABC approach over all the other approaches. The new approach obtained better quality solutions in shorter
time. In [53], Sundar and Singh applied ABC to solve the quadratic minimum spanning tree (Q-MST) problem. Pan et al. [42]
proposed a discrete ABC (DABC) algorithm to solve the lot-streaming flow shop scheduling problem. Unlike the original ABC,
DABC represented a food source as a discrete job permutation, and employed some discrete operators to generate new food
sources. In [57], Tasgetiren et al. presented another discrete ABC algorithm hybridized with a variant of iterated greedy algo-
rithms for minimizing the total flow-time in permutation flow shops. Karaboga and Gorkemli [27] proposed a combinatorial
ABC to solve traveling salesman problem (TSP). Simulation results show that the new approach achieves reasonable
solutions. Szeto et al. [56] proposed an enhanced ABC algorithm to solve a capacitated vehicle routing problem. Simulation
results show that the enhanced ABC algorithm is able to produce much better solutions than the standard one. Sundar and
Singh [54] combined ABC with a local search strategy to solve the non-unicost set covering problem (SCP). Computational
results show that the hybrid algorithm is competitive in terms of solution quality with other meta-heuristic approaches
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for the SCP problem. Kashan et al. [28] introduced a new version of ABC to solve binary optimization problems. The new
approach uses a new differential expression which employs a measure of dissimilarity to respond the structure of binary
problems. Sundar and Singh [55] applied ABC to solve the dominating tree problem (DTP). Simulation results show that
ABC and ACO are comparable in terms of solution quality for the DTP problem.

Omkar et al. [41] proposed a vector evaluated ABC (VEABC) algorithm for multi-objective design optimization of compos-
ite structures. Results show that the VEABC based optimization model has performed quite satisfactorily in comparison with
other nature inspired techniques, such as PSO, GA, and artificial immune system (AIS). Samanta and Chakraborty [50] applied
ABC algorithm to solve multi-objective non-traditional machining (NTM) processes, in which a weighted method is used to
transform multi-objective optimization into single objective optimization.

In this section, we only presented a brief overview of some recently proposed ABC variants; a comprehensive survey can
be found in [24].

3. Multi-strategy ensemble ABC (MEABC) algorithm

The solution search strategy (see Eq. (1)) plays an important role in determining the performance of the original ABC algo-
rithm. Generally, different optimization problems require different search strategies depending on the properties of prob-
lems. It has been pointed out in [25] that the original ABC performs effectively on basic functions, while ABC with
frequency or magnitude perturbation (two improved solution search strategies) works well on hybrid complex problems.
To solve a specific problem, different solution search strategies may be better during different stages of the evolution than
a single search strategy as in the original ABC. Ensemble learning has proven to be very efficient and effective for adjusting
different strategies or control parameters in an online manner [11,34–36,58,68,70].

In [11], Du and Li proposed a multi-strategy ensemble PSO (MEPSO) for dynamic optimization. In MEPSO, all particles are
divided into two parts, denoted as part I and part II, respectively. Gaussian local search and differential mutation are intro-
duced into these two parts, respectively. Experimental analyses show that the mechanisms used in part I can enhance the
convergence ability, while mechanisms used in part II can improve the ability of catching up with the changing optimum in
dynamic environments. Mallipeddi et al. [34] introduced ensemble strategies for evolutionary programming (EP) where each
mutation operator has its associated population and every population benefits from every function call. This approach ben-
efits from different mutation operators with different parameter values whenever they are effective during different stages
of the search process. Yu et al. [68] proposed an ensemble of niching algorithm (ENA) which is realized using four different
parallel populations. The offspring of each population is considered by all parallel populations. Results show that the com-
petitiveness of the ENA method. The multi-objective evolutionary algorithm based on decomposition (MOEA/D) has shown a
good performance, but the neighborhood size (NS) parameter is important to its performance. In [70], Zhao et al. presented
an ensemble of different NSs with online self-adaptation. Results show that the ensemble method achieved superior perfor-
mance than the original MOEA/D.

Motivated by these observations, this paper proposes an ensemble of multiple solution search strategies for ABC
(MEABC), in which a pool of distinct solution search strategies coexists throughout the search process and competes
to produce better offspring. To implement MEABC, we need to address two crucial questions: First, which solution search
strategy should be chosen to construct the strategy pool? Second, how do we assign solution search strategies to food
sources?

The solution search strategies in the pool should have diverse characteristics, so then they can exhibit distinct perfor-
mance characteristics during different stages of the evolution. At present, there are several solution search strategies, such
as the strategy of the original ABC, gbest-guided ABC [71], ABC/best/1 [17], ABC with frequency or magnitude perturbation
[25], and chaotic ABC [2]. In this paper, three different solution search strategies are employed to construct the strategy pool:
(1) the original ABC; (2) gbest-guided ABC; and (3) modified ABC/best/1.

According to the solution search strategy of the original ABC algorithm described in Eq. (1), the new candidate solution is
generated by moving the old solution towards another solution selected randomly from the population. In fact, according to
the probability theory, 50% of the time the randomly selected solution is a bad one. So, the new candidate solution is not
promising to be a solution better than its parent. Inspired by PSO, Zhu and Kwong [71] proposed a gbest-guided ABC (GABC)
algorithm, in which the information of the gbest is used to guide the search of candidate solutions. The solution search strat-
egy in GABC is described as follows:
v i;j ¼ xi;j þ /i;jðxi;j � xk;jÞ þ wi;jðgbestj � xi;jÞ; ð4Þ
where gbestj is the jth element of the global best solution, Xk is a randomly selected solution in the current population (k – i),
j 2 f1;2; . . . ;Dg is a random index, wi;j is a uniform random number in the range ½0;C�, and C is a non-negative constant. In
[71], C ¼ 1:5 is regarded as the best setting.

In [17], Gao and Liu also utilized the search information of the gbest to direct the movement of the current population and
proposed a modified ABC (MABC) algorithm. Unlike GABC, MABC is inspired by the DE/best/1 mutation scheme. The new
solution search strategy, called ABC/best/1, is given as follows:
v i;j ¼ xbest;j þ /i;jðxr1;j � xr2;jÞ; ð5Þ
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where r1 and r2 are two random integer numbers selected from f1;2; . . . ; SNg; r1 – r2 – i, and j 2 f1;2; . . . ;Dg is a random
index.

In our initial idea, the solution search strategies of the original ABC, GABC, and MABC are utilized to construct the strat-
egy pool. It is expected that the original ABC shows the best exploration ability but the slowest convergence speed. MABC
has the fastest convergence rate (good exploitation), and GABC provided a middle phase between the original ABC and
MABC. By the ensemble of these strategies, MEABC algorithm can behave different search characteristics during different
stages of the evolution. However, experimental results show that GABC converges faster than MABC. So, the initial design
is not consistent with our expectations. To tackle this problem, we modified the solution search strategy of MABC
(ABC/best/1) as follows:
Fig. 1.
solution
v i;j ¼ xbest;j þ /i;jðxbest;j � xk;jÞ: ð6Þ
Based on the above analysis, the strategy pool consists of the solution search strategies of the original ABC, GABC, and
modified ABC/best/1. Let SP be the strategy pool, and each strategy SPj in the pool is defined by
SPj ¼
The original ABC
GABC
Modified ABC=best=1

8><
>:

; ð7Þ
where SPj is the jth strategy in the strategy pool, and j ¼ 1;2;3.
In order to address the second question, we employed a new encoding method as described in Fig. 1, where Xi is the posi-

tion vector of the ith food source (solution), and Si indicates the employed solution search strategy for the ith solution. The
idea of the encoding method is inspired by [34,44]. Initially, each food source (solution) is randomly assigned a solution
search strategy (Si ¼ SPj, and j 2 f1;2;3g is a random integer index). During the search process, the value of Si is changed
according to the quality of the new candidate solution Vi. If the new solution Vi is better then its parent Xi, it means that
the current strategy is suitable for the search. Keeping the current Si may continue to obtain better solutions. If the new solu-
tion Vi is worse than its parent, it indicates that the current strategy does not work for improving the quality of solutions. So,
changing the current strategy Si may be more suitable for the follow-up search. Based on the above analysis, the method of
updating Si for each food source (solution) is illustrated in Algorithm 1.

Algorithm 1. Dynamic Adjustment for Solution Search Strategy

1 if the new candidate solution Vi is better than Xi then
2 Xi ¼ Vi;
3 Si ¼ Si;
4 end
5 else
6 Randomly select a strategy SPh from the strategy pool SP, and SPh – Si;
7 Xi ¼ Xi;
8 Si ¼ SPh;
9 end
The encoding method of food source in MEABC algorithm, where Xi is the position vector of the ith food source, and Si indicates the employed
search strategy for the ith food source.
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Algorithm 2. The Proposed MEABC Algorithm

1 Randomly generate SN solutions (positions of food sources) as an initial population fXiji ¼ 1;2; . . . ; SNg;
2 Randomly initialize Si for each solution;
3 Calculate the function value f ðXiÞ of each solution in the population;
4 Initialize gbest;
5 while FEs 6MAX FEs do
6 for i ¼ 1 to SN do
7 if Si ¼¼ ‘ABC’ then
8 Randomly choose j from f1;2; . . . ;Dg and produce a random number /i;j 2 ½�1;1�;
9 Randomly select a solution Xk from the current population, and k – i;
10 Generate a new candidate solution Vi according to Eq. (1);
11 end
12 if Si ¼¼ ‘GABC’ then
13 Randomly choose j from f1;2; . . . ;Dg and produce a random number /i;j 2 ½�1;1�;
14 Randomly select a solution Xk from the current population, and k – i;
15 Generate a new candidate solution Vi according to Eq. (4) ðC ¼ 1:5Þ;
16 end
17 if Si ¼¼ ‘Modified ABC/best/1’ then
18 Randomly choose j from f1;2; . . . ;Dg and produce a random number /i;j 2 ½�1;1�;
19 Generate a new candidate solution Vi according to Eq. (6);
20 end
21 Calculate the function value of Vi;
22 FEs++;
23 Update Si according to Algorithm 1 (Dynamic Adjustment for Solution Search Strategy);
24 end
25 Update gbest;
26 end

The main steps of MEABC are described in Algorithm 2, where FEs is the number of function evaluations, and MAX FEs is
the maximum number of function evaluations. By the suggestions of [3], the objective function value is directly used for
solution comparison. Compared to the original ABC, MEABC eliminates the parameter limit, but it contains a new parameter
C employed in GABC solution search strategy. Both MEABC and MABC also eliminates the parameter limit, but MABC intro-
duced a new parameter p to control the frequency of conducting the original ABC algorithm, where p 2 ½0;1�. Results
reported that the parameter p plays an important role in balancing the exploration and exploitation. p ¼ 0 obtained faster
convergence for Sphere and Ackley functions, while p ¼ 0:7 achieved better results for the rest four functions. Besides SN
and limit, GABC introduced another parameter C, which was set to 1.5 based on empirical studies.

To solve a specific problem f, assume that Oðf Þ is the computational time complexity of evaluating its function value. The
maximum number of generations is set to Gmax. For the original ABC, its computational time complexity is
O½Gmax � ðSN � f þ SN � f Þ� ¼ OðGmax � SN � f Þ. The GABC only modified the solution search strategy of the original ABC. So, the
computational time complexity of GABC is the same with the original ABC. For MABC, it introduced a parameter p 2 ½0;1�
to decide the frequency of conducting the original ABC search, and eliminated the parameter limit. Therefore, the
Table 1
Benchmark functions used in the experiments, where f ðxoÞ is the global optimum.

Functions Name Search range f ðxoÞ

f1 Sphere ½�100;100� 0
f2 Schwefel 2.22 ½�10;10� 0
f3 Schwefel 1.2 ½�100;100� 0
f4 Schwefel 2.21 ½�100;100� 0
f5 Rosenbrock ½�30;30� 0
f6 Step ½�100;100� 0
f7 Quartic with noise ½�1:28;1:28� 0
f8 Schwefel 2.26 ½�500;500� �418:98 � D
f9 Rastrigin ½�5:12;5:12� 0
f10 Ackley ½�32;32� 0
f11 Griewank ½�600;600� 0
f12 Penalized ½�50;50� 0
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computational time complexity of MABC is O½Gmax � ðSN � f þ p � SN � f Þ� ¼ OðGmax � SN � f Þ. For MEABC, its computational time
complexity is O½Gmax � ðSN � f Þ� ¼ OðGmax � SN � f Þ. Although the above four ABC algorithms have the same computational time
complexity, our approach MEABC is simpler and easier to implement.
4. Experimental verifications

4.1. Test problems

There are twelve benchmark functions used in the following experiments. These problems were utilized in previous stud-
ies [16,62,63]. All these problems should be minimized. The brief descriptions of these benchmark problems are listed in
Table 1. More details about the definition of benchmark problems can be found in [65].

4.2. Comparison of MEABC with other ABC variants

In this section, the proposed MEABC is compared with three other ABC algorithms including the original ABC, GABC [71],
and MABC [17]. The current experiment includes three series: (1) comparison of MEABC with ABC; (2) comparison of MEABC
with GABC and (3) comparison of MEABC with MABC.

4.2.1. Comparison of MEABC with ABC
By the suggestions of [23], the population size SN is set to 100 for the original ABC, and the number of food sources in the

population is 50. For MEABC, all bees are regarded as the same type, and the number of food sources in the population is
equal to the number of bees. So, the population size of MEABC is set to 50. The parameter limit used in ABC is set to 100,
but MEABC does not contain this parameter. Based on a previous study [71], the constant value C is set to 1.5. Each algorithm
stops when the number of function evaluations (FEs) reaches the maximum FEs (MAX_FEs), where MAX FEs ¼ 5000 � D, and
D is the dimension of the problem.

Table 2 summarizes the computational results achieved by ABC and MEABC for D ¼ 30, where ‘‘Mean’’ indicates the mean
best function value and ‘‘Std Dev’’ represents the corresponding standard deviation. The best results are shown in bold. As
seen, MEABC outperforms ABC on all functions except for f6; on this function, both of them can easily converge to the global
optimum. By the ensemble of multi-strategy, MEABC achieves promising results on both unimodal and multimodal functions
except f3 (Schwefel 1.2). Though f3 is a unimodal function, the rotated search space hinders the search of ABC. According to
our literature review, the original ABC and its most modifications cannot find reasonable solutions for this function. Fig. 2
presents the convergence graphs of ABC and MEABC on some representative functions. It shows MEABC achieves faster con-
vergence rate than ABC.

The above experiment compares the quality of the final solutions achieved by ABC and MEABC. In the following exper-
iment, we present the comparison of the convergence speed and success rate between the two algorithms. A threshold value
of the objective function is selected for each test function. For most functions, the threshold is set to 1E�20. For other func-
tions that ABC algorithms are difficult to solve, low accuracy of the threshold is employed. The specific threshold values are
listed in the third column of Table 3. The stopping criterion is that each algorithm is terminated when the best function value
found so far is below the predefined threshold value or the number of FEs reaches to its maximum value (5.00E+05). For each
test function, each algorithm is run 30 times. The mean number of FEs required to converge to the threshold and successful
running rate (SR) are recorded.

Table 3 lists the results of mean number of FEs (Mean FEs) and successful running rate (SR), where ‘‘NA’’ represents that
no runs of the corresponding algorithm converged below the predefined threshold before meeting the maximum number of
Table 2
Results achieved by ABC and MEABC when D ¼ 30. The best results among the comparison are shown in bold.

Functions ABC MEABC

Mean Std. dev. Mean Std. dev.

f1 1.14E�15 3.58E�16 4.85E�40 2.31E�40
f2 1.49E�10 2.34E�10 1.25E�21 3.56E�21
f3 1.05E+04 3.37E+03 9.81E+03 2.49E+03
f4 4.07E+01 1.72E+01 4.89E+00 1.37E+00
f5 1.28E+00 1.05E+00 2.86E�01 3.48E�01
f6 0.00E+00 0.00E+00 0.00E+00 0.00E+00
f7 1.54E�01 2.93E�01 2.29E�02 1.38E�02
f8 –12490.5 5.87E+01 –12569.5 1.59E�12
f9 7.11E�15 2.28E�15 0.00E+00 0.00E+00
f10 1.60E�09 4.32E�09 2.90E�14 1.32E�14
f11 1.04E�13 3.56E�13 0.00E+00 0.00E+00
f12 5.46E�16 3.46E�16 3.02E�17 0.00E+00



(a) Sphere ( f1) (b) Schwefel 2.22 ( f2)

(c) Schwefel 2.21 ( f4) (d) Rosenbrock ( f5)

(e) Schwefel 2.26 ( f8) (f) Rastrigin ( f9)

(g) Ackley ( f10) (h) Penalized ( f12)

Fig. 2. The convergence characteristics of ABC and MEABC when D ¼ 30.
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FEs. The best results are shown in bold. From the results, MEABC shows faster convergence speed than ABC on all functions
except for f6; on this function, ABC is slightly faster than MEABC. From the results of total average FEs, MEABC costs less FEs
to reach the threshold. The acceleration rate between MEABC and ABC is 1.83. The original ABC achieves a lower SR (27.5%)



Table 3
Results for mean number of FEs (Mean FEs) and successful running rate (SR) under predefined accuracy level (threshold). The best results among the
comparison are shown in bold.

Functions D Threshold ABC MEABC

Mean FEs SR (%) Mean FEs SR (%)

f1 30 1.00E�20 NA 0 8.85E+04 100
f2 30 1.00E�20 NA 0 1.49E+05 100
f3 30 1.00E�01 NA 0 NA 0
f4 30 1.00E�01 NA 0 4.13E+05 100
f5 30 1.00E�01 3.35E+05 50 2.18E+05 100
f6 30 1.00E�20 1.71E+04 100 1.77E+04 100
f7 30 1.00E�01 NA 0 4.68E+04 100
f8 30 �12,569 1.57E+05 100 3.41E+04 100
f9 30 1.00E�20 2.69E+05 80 5.39E+04 100
f10 30 1.00E�20 NA 0 NA 0
f11 30 1.00E�20 NA 0 9.23E+04 100
f12 30 1.00E�20 NA 0 NA 0

Total average 3.98E+05 27.5 2.18E+05 75
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because it fails to solve 8 functions. MEABC successfully converges to the threshold on 9 functions, and achieves a higher SR
(75%).

4.2.2. Comparison of MEABC with GABC
In this section, we compare the performance of MEABC with GABC. To have a fair comparison, we use the same parameter

settings as described in [71]. For GABC and MEABC, the SN and the constant value C are set to 80 and 1.5, respectively. Each
algorithm stops when the number of function evaluations (FEs) reaches the maximum FEs (MAX_FEs = 4.0E+05). For each
function, experiment is repeated 30 times independently. And the reported results are the means and standard deviations
of the statistical experimental data.

The literature [71] reported the computational results of GABC on 6 functions, and we also use the same benchmark for
this comparison. Table 4 gives the comparison results between GABC and MEABC, where D is the dimensional size, ‘‘Mean’’
indicates the mean best function value, and ‘‘Std Dev’’ represents the corresponding standard deviation. The best results are
shown in bold. From the results, GABC achieves better results on two low-dimensional problems. For Generalized Schaffer
function, GABC outperforms MEABC for D ¼ 3, while both of them can converge to the global optimum for D ¼ 2. For Rosen-
brock function, GABC performs better than MEABC for D ¼ 2 and D ¼ 3. For the rest 4 functions, MEABC obtains better results
than GABC when D ¼ 30 and 60.

4.2.3. Comparison of MEABC with MABC
This section presents a comparison between MABC and MEABC. For the sake of fair competition, the same parameter set-

tings as described in [17]. For MABC and MEABC, the SN and MAX_FEs are set to 75 and 1.5E+05, respectively. The selective
probability p used in MABC is set to 0.7. For MEABC, the constant value C is equal to 1.5. Throughout the experiment, each
algorithm is run 30 times per function, and the mean and standard deviation results are reported.

Table 5 lists the computational results achieved by MABC and MEABC, where D is the dimensional size, ‘‘Mean’’ indicates
the mean best function value, and ‘‘Std Dev’’ represents the corresponding standard deviation. The best results are shown in
bold. It can be seen that MABC achieves better results than MEABC on only one function. Both MABC and MEABC can find the
global optimum on 4 functions. For the rest 6 functions, MEABC outperforms MABC.
Table 4
Results achieved by GABC and MEABC when D ¼ 30. The best results among the comparison are shown in bold.

Functions D GABC MEABC

Mean Std. dev. Mean Std. dev.

Generalized Schaffer 2 0.00E+00 0.00E+00 0.00E+00 0.00E+00
3 1.85E�18 1.01E�17 1.69E�16 2.34E�16

Rosenbrock 2 1.68E�04 1.45E�04 5.67E�03 3.53E�03
3 2.66E�03 2.22E�03 8.73E�03 5.92E�03

Sphere 30 4.18E�16 7.37E�17 3.94E�72 4.18E�72
60 1.43E�15 1.38E�15 2.35E�31 5.49E�31

Griewank 30 2.96E�17 4.99E�17 0.00E+00 0.00E+00
60 7.55E�16 4.13E�16 0.00E+00 0.00E+00

Rastrigin 30 1.33E�14 2.45E�14 0.00E+00 0.00E+00
60 3.52E�13 1.24E�13 0.00E+00 0.00E+00

Ackley 30 3.22E�14 3.25E�15 2.69E�14 3.76E�14
60 1.00E�13 6.09E�15 8.16E�14 6.21E�14



Table 5
Results achieved by MABC and MEABC when D ¼ 30. The best results among the comparison are shown in bold.

Functions MABC MEABC

Mean Std. dev. Mean Std. dev.

Sphere 9.43E�32 6.67E�32 4.85E�40 2.31E�40
Schwefel 2.22 2.40E�17 9.02E�18 1.25E�21 3.56E�21
Schwefel 2.21 1.02E+01 1.49E+00 4.89E+00 1.37E+00
Rosenbrock 6.11E�01 4.55E�01 2.86E�01 3.48E�01
Step 0.00E+00 0.00E+00 0.00E+00 0.00E+00
Quartic with noise 3.71E�02 8.53E�03 2.29E�02 1.38E�02
Schwefel 2.26 �12569.5 4.53E�13 �12569.5 1.59E�10
Rastrigin 0.00E+00 0.00E+00 0.00E+00 0.00E+00
Ackley 4.13E�14 2.17E�15 2.90E�14 1.32E�14
Griewank 0.00E+00 0.00E+00 0.00E+00 0.00E+00
Penalized 1.90E�32 3.70E�33 3.02E�17 0.00E+00
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4.3. Comparison of MEABC with some recently proposed PSO algorithms

PSO is one of the most popular swarm intelligence algorithms, which has shown fast convergence and good search abil-
ities on many benchmark and real-world optimization problems [7,15,43]. In this section, MEABC is compared with some
recently proposed PSO algorithms. The involved algorithms are listed as follows:

� Self-organizing hierarchical PSO with time-varying acceleration coefficients (HPSO-TVAC) [48].
� Fully informed particle swarm (FIPS) [38].
� Dynamic multi-swarm PSO (DMS-PSO) [32].
� Comprehensive learning PSO (CLPSO) [31].
� Adaptive PSO (APSO) [69].
� Our approach MEABC.

For MEABC, the same parameter settings are used as described in Section 4.2. For the rest five PSO algorithms, the pop-
ulation size is set to 20 by the suggestions of [69]. The other parameters of HPSO-TVAC, FIPS, DMS-PSO, CLPSO, and APSO are
described in [69]. For all algorithms, the maximum number of fitness evaluations (MAX_FEs) is set to 2.00E+05. All the exper-
iments are conducted 30 times, and the mean best function values are recorded.

Table 6 shows the mean best functions values achieved by MEABC and five other PSO algorithms. The best results among
the comparison are shown in bold. Results of HPSO-TVAC, FIPS, DMS-PSO, CLPSO, and APSO were taken from Table 6 in [69].
From the results, MEABC outperforms FIPS and DMS-PSO on 6 functions, while FIPS and DMS-PSO performs better than
MEABC on 3 functions. All algorithms can find the global optimum on the Step function. CLPSO, APSO and MEABC success-
fully solve Schwefel 2.26, while the other algorithms converge to near-optimal solutions. HPSO-TVAC achieves better results
than MEABC on the penalized function, while MEABC find more accurate solutions on 8 functions. For the comparison of
MEABC with APSO, both of them win 4 functions. It seems that they obtain similar performance on the test suite.

In order to compare the performance of multiple algorithms on the test suite, Friedman and Wilcoxon tests are conducted
[9,19,20]. Table 7 presents the statistical results achieved by Friedman and Wilcoxon tests. The best ranking (with the lowest
ranking value) and the p-values below 0.05 (the significant level) are shown in bold. As seen, the performance of the six
algorithms ranks as follows: MEABC, APSO, CLPSO, FIPS, DMS-PSO, and HPSO-TVAC. The highest average ranking is obtained
by the MEABC algorithm. It demonstrates that MEABC is the best one among the six algorithms. The p-values show that
MEABC is only significantly better than HPSO-TVAC.
Table 6
Mean best function values for MEABC and five PSO algorithms, where ‘‘w=t=l’’ means that MEABC wins in w functions, ties in t functions, and loses in l functions,
compared with its competitors. The best results among the comparison are shown in bold.

Functions D MAX_FEs FIPS HPSO-TVAC DMS-PSO CLPSO APSO MEABC
Mean Mean Mean Mean Mean

Sphere 30 2.00E+05 3.21E�30 3.38E�41 3.85E�54 1.89E�19 1.45E�150 1.55E�56
Schwefel 2.22 30 2.00E+05 1.32E�14 6.90E�23 2.61E�29 1.01E�16 5.15E�84 1.08E�29
Rosenbrock 30 2.00E+05 2.25E+01 1.30E+01 3.23E+01 1.10E+01 2.84E+00 1.34E�01
Step 30 2.00E+05 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
Quartic with noise 30 2.00E+05 2.55E�03 5.54E�02 1.10E�02 3.92E�03 4.66E�03 2.18E�02
Schwefel 2.26 30 2.00E+05 �10113.8 �10868.6 �9593.3 �12569.5 �12569.5 �12569.5
Rastrigin 30 2.00E+05 3.00E+01 2.39E+00 2.81E+01 2.57E�11 5.80E�15 0.00E+00
Ackley 30 2.00E+05 7.69E�15 2.06E�10 8.52E�15 2.01E�12 1.11E�14 1.09E�14
Griewank 30 2.00E+05 9.04E�04 1.07E�02 1.31E�02 6.53E�13 1.67E�02 0.00E+00
Penalized 30 2.00E+05 1.22E�31 7.07E�30 2.05E�32 1.59E�21 3.76E�31 3.02E�17
w=t=l 6=1=3 8=1=1 6=1=3 6=2=2 4=2=4 –



Table 7
Results achieved by Friedman and Wilcoxon tests. The best ranking (with the lowest ranking value) and the
p-values below 0.05 are shown in bold.

Friedman test Wilcoxon test

Algorithms Rankings MEABC vs. p-values

MEABC 2.65 FIPS 1.73E�01
APSO 2.75 HPSO-TVAC 2.10E�02
CLPSO 3.65 DMS-PSO 2.14E�01
FIPS 3.75 CLPSO 2.08E�01
DMS-PSO 3.85 APSO 4.01E�01
HPSO-TVAC 4.35
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4.4. Comparison of MEABC with some recently proposed DE algorithms

Like PSO, DE is also a popular evolutionary optimization technique. Some experimental studies show that DE is compet-
itive to PSO and simple genetic algorithm (SGA) [60]. For its simple concept, easy implementation yet effectiveness, it has
attracted much attention. Various DE algorithms have been designed to satisfy the requirements of different problems. In
this section, MEABC is compared with some recently proposed DE algorithms. The involved algorithms are listed as follows:

� Self-adapting DE (jDE) [4].
� Self-adaptive DE (SaDE) [44].
� Opposition-based DE (ODE) [45].
� Improved ABC (IABC) [16].
� Our approach MEABC.

For all algorithms, the same maximum number of fitness evaluations (MAX_FEs) are used. The specific settings of
MAX_FEs are listed in the third column of Table 8 by the suggestions of [16]. For MEABC, the SN and C are set to 50, and
1.5, respectively. For IABC, the parameter settings are described in [16]. For other parameters of jDE, SaDE, and IABC, we fol-
low the literature [16]. For ODE, the population size, scale factor, crossover rate, and jumping rate are set to 100, 0.5, 0.9, and
0.3, respectively [45]. All the experiments are conducted 30 times, and the mean best function values are recorded.

Table 8 shows the mean best functions values achieved by MEABC, jDE, SaDE, ODE, and IABC. Results of jDE, SaDE, and
IABC were taken from Table 5 in [16]. From the results, MEABC achieves better results than SaDE on 10 functions. For the
rest 2 functions, SaDE performs better than MEABC. jDE outperforms MEABC on 3 functions, while MEABC wins on 8 func-
tions. MEABC achieves better results than ODE on 9 functions, while ODE performs better on the rest 3 functions. For the
comparison of IABC and MEABC, IABC outperforms MEABC on 6 functions, while MEABC wins on 3 functions. For the rest
3 functions, both MEABC and IABC can converge to the global optimum. The Step function is a simple unimodal function,
and many algorithms can easily converge to the global optimum. However, all algorithms except for MEABC fail to solve
it under the predefined MAX_FEs (1.00E+04). It demonstrates that MEABC converges faster than other algorithms on this
function. For Schwefel 2.26, jDE, IABC, and MEABC can find the global optimum, while SaDE and ODE fail. For Rastrigin, both
MEABC and IABC can find the global optimum, but the other three DE algorithms are trapped into local minima.

Table 9 presents the statistical results achieved by Friedman and Wilcoxon tests. The best ranking (with the lowest
ranking value) and the p-values below 0.05 (the significant level) are shown in bold. As seen, the performance of the six
Table 8
Mean best function values for MEABC, SaDE, jDE, ODE, and IABC, where ‘‘w=t=l’’ means that MEABC wins in w functions, ties in t functions, and loses in l
functions, compared with its competitors. The best results among the comparison are shown in bold.

Functions D MAX_FEs SaDE jDE ODE IABC MEABC
Mean Mean Mean Mean Mean

Sphere 30 1.50E+05 4.50E�20 2.50E�28 5.53E�28 5.34E�178 9.51E�82
Schwefel 2.22 30 2.00E+05 1.90E�14 1.50E�23 5.71E�12 8.82E�127 6.04E�57
Schwefel 1.2 30 5.00E+05 9.00E�37 5.20E�14 1.49E�13 1.78E�65 1.86E+03
Schwefel 2.21 30 5.00E+05 7.40E�11 1.40E�15 3.92E�66 4.98E�38 6.08E�06
Rosenbrock 30 2.00E+06 1.80E+01 8.00E�02 7.98E+00 4.75E�03 2.38E+00
Step 30 1.00E+04 9.30E+02 1.00E+03 1.52E+02 3.33E�02 0.00E+00
Quartic with noise 30 3.00E+05 4.80E�03 3.30E�03 7.35E�04 2.42E�03 2.29E�03
Schwefel 2.26 30 1.00E+05 �12564.8 �12569.5 �5695.9 �12569.5 �12569.5
Rastrigin 30 1.00E+05 1.20E�03 1.50E�04 9.41E+01 0.00E+00 0.00E+00
Ackley 30 5.00E+04 2.70E�03 3.50E�04 1.06E�03 3.87E�14 3.37E�14
Griewank 30 5.00E+04 7.80E�04 1.90E�05 4.45E�06 0.00E+00 0.00E+00
Penalized 30 5.00E+04 1.90E�05 1.60E�07 1.05E�07 1.57E�32 3.02E�17
w=t=l 10=0=2 8=1=3 9=0=3 3=3=6 –



Table 9
Results achieved by Friedman and Wilcoxon tests. The best ranking (with the lowest ranking value) and the p-values below 0.05 are shown in bold.

Friedman test Wilcoxon test

Algorithms Rankings MEABC vs. p-values

IABC 1.58 SaDE 5.97E�02
MEABC 2.33 jDE 4.24E�01
jDE 3.25 ODE 2.09E�01
ODE 3.50 IABC 5.15E�01
SaDE 4.33
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algorithms ranks as follows: IABC, MEABC, jDE, ODE, and SaDE. The highest average ranking is obtained by the IABC
algorithm. The p-values show that MEABC is not significantly better than other algorithms.

The IABC employs a new parameter M to control how many dimensions to be updated, where 1 6 M 6 D. Results confirm
that the performance of IABC does highly depend on the M which has been set experimentally for each specific problem. For
different problems, IABC defined different M to obtain good results (please see Table 1 in [16]). For example, IABC achieved
better results for Sphere, Schwefel 2.21, Rastrigin, and Griewank when M is set to 25, 10, 1, and 3, respectively [16]. From the
comparison between MEABC and IABC, IABC wins 5 on all 7 unimodal functions. For multimodal functions, IABC achieves
better results than MEABC one only one function, while MEABC also performs better than IABC on one function. For the rest
3 multimodal functions, both MEABC and IABC achieve the same results. The computational time complexity of IABC is
OðGmax � SN �M � f Þ, which is higher than the original ABC and MEABC ðOðGmax � SN � f ÞÞ. The IABC has 3 parameters (SN; p,
and M), while our approach MEABC has two (SN and C). IABC outperforms our approach MEABC, but on the other hand,
MEABC is simpler and its performance is less sensitive to its parameters. It is worth to mention that both MEABC and IABC
obtain similar performance on complex multimodal problems.
4.5. Test on the CEC 2013 shifted and rotated benchmark problems

To further verify the performance of MEABC, a set of recently proposed 28 CEC 2013 shifted and rotated benchmark prob-
lems are used. A summary of these functions are listed in Table 10. More detailed definitions of them can be found in [33]. In
this paper, we only consider the test suite with D ¼ 30.
Table 10
Summary of the CEC 2013 benchmark problems.

Problems Name Global optimum

F1 Sphere Function �1400
F2 Rotated High Conditioned Elliptic Function �1300
F3 Rotated Bent Cigar Function �1200
F4 Rotated Discus Function �1100
F5 Different Powers Function �1000
F6 Rotated Rosenbrock’s Function �900
F7 Rotated Schaffers F7 Function �800
F8 Rotated Ackley’s Function �700
F9 Rotated Weierstrass Function �600
F10 Rotated Griewank’s Function �500
F11 Rastrigin’s Function �400
F12 Rotated Rastrigin’s Function �300
F13 Non-Continuous Rotated Rastrigin’s Function �200
F14 Schwefel’s Function �100
F15 Rotated Schwefel’s Function 100
F16 Rotated Katsuura Function 200
F17 Lunacek Bi_Rastrigin Function 300
F18 Rotated Lunacek Bi_Rastrigin Function 400
F19 Expanded Griewank’s plus Rosenbrock’s Function 500
F20 Expanded Scaffer’s F6 Function 600
F21 Composition Function 1 (n ¼ 5, Rotated) 700
F22 Composition Function 2 (n ¼ 3, Unrotated) 800
F23 Composition Function 3 (n ¼ 3, Rotated) 900
F24 Composition Function 4 (n ¼ 3, Rotated) 1000
F25 Composition Function 5 (n ¼ 3, Rotated) 1100
F26 Composition Function 6 (n ¼ 5, Rotated) 1200
F27 Composition Function 7 (n ¼ 5, Rotated) 1300
F28 Composition Function 8 (n ¼ 5, Rotated) 1400
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In this section, we compare MEABC with three other recently published algorithms on CEC 2013. The involved algorithms
are listed as follows.

� Self-adaptive heterogeneous PSO (fk-PSO) [40].
� Population variance-based adaptive DE (ADE) [6].
� DE with automatic parameter configuration (DE-APC) [13].
� The proposed MEABC.

For fk-PSO, ADE, and DE-APC, we use the same parameter settings for these three methods as in their original papers. For
MEABC, the SN and C are set to 60, and 1.5, respectively. By the suggestions of [33], the number of MAX_FEs is set to 3.00E+05
for all algorithms ðD ¼ 30Þ. For each test function, each algorithm is run 51 times. Throughout the experiments, the mean
function error value ðf ðxÞ � f ðxoÞÞ are reported, where x is the best solution found by the algorithm in a run, and xo is the
global optimum of the test function. Error values less than 1E�08 are taken as zero [33].

Table 11 presents the mean error function values achieved by the four algorithms on the test suite. To have a fair com-
parison, results of DE-APC, fk-PSO, and ADE were taken from their original papers. From the results, MEABC performs better
than DE-APC on 13 functions, while DE-APC outperforms MEABC on 11 functions. For the rest 4 functions, both MEABC and
DE-APC achieve the same results. Compared to fk-PSO and ADE, MEABC obtains better results on 13 functions, and loses in 12
functions. For the rest 3 functions, they achieve the same results.

Table 12 presents the statistical results achieved by Friedman and Wilcoxon tests. The best ranking (with the lowest
ranking value) is shown in bold. From the results, the performance of the four algorithms ranks as follows: MEABC,
Table 11
Results for CEC 2013 benchmark functions when D ¼ 30, where ‘‘w=t=l’’ means that MEABC wins in w functions, ties in t functions, and loses in l functions,
compared with its competitors. The best results among the comparison are shown in bold.

Functions DE-APC fk-PSO ADE MEABC
Mean error Mean error Mean error Mean error

F1 0.00E+00 0.00E+00 0.00E+00 0.00E+00
F2 1.75E+05 1.59E+06 2.18E+06 1.23E+06
F3 3.21E+06 2.40E+08 1.65E+03 1.40E+08
F4 2.21E�01 4.78E+02 1.70E+04 8.35E+04
F5 0.00E+00 0.00E+00 1.40E�07 0.00E+00
F6 9.35E+00 2.99E+01 8.29E+00 1.01E+01
F7 2.18E+01 6.39E+01 1.29E+00 9.23E+01
F8 2.09E+01 2.09E+01 2.09E+01 2.09E+01
F9 3.07E+01 1.85E+01 6.30E+00 2.88E+01
F10 6.42E�02 2.29E�01 2.16E�02 5.57E+00
F11 3.08E+00 2.36E+01 5.84E+01 0.00E+00
F12 3.17E+01 5.64E+01 1.15E+02 2.07E+02
F13 7.55E+01 1.23E+02 1.31E+02 2.29E+02
F14 3.84E+03 7.04E+02 3.20E+03 1.37E+01
F15 4.14E+03 3.42E+03 5.61E+03 3.41E+02
F16 2.46E+00 8.48E�01 2.39E+00 1.44E+00
F17 5.92E+01 5.26E+01 1.02E+02 3.04E+01
F18 6.04E+01 6.81E+01 1.82E+02 1.80E+02
F19 2.30E+00 3.12E+00 5.40E+00 3.94E�01
F20 1.26E+01 1.20E+01 1.13E+01 1.56E+01
F21 2.67E+02 3.11E+02 3.19E+02 2.10E+02
F22 4.56E+03 8.59E+02 2.50E+03 1.78E+01
F23 4.18E+03 3.57E+03 5.81E+03 5.16E+03
F24 2.92E+02 2.48E+02 2.02E+02 2.81E+02
F25 2.99E+02 2.49E+02 2.30E+02 2.74E+02
F26 3.29E+02 2.95E+02 2.18E+02 2.01E+02
F27 1.19E+03 7.76E+02 3.26E+02 4.02E+02
F28 3.00E+02 4.01E+02 3.00E+02 3.00E+02
w=t=l 13=4=11 13=3=12 13=3=12 –

Table 12
Results achieved by Friedman and Wilcoxon tests. The best ranking is shown in bold.

Friedman test Wilcoxon test

Algorithms Rankings MEABC vs. p-values

MEABC 2.43 DE-APC 8.64E�01
fk-PSO 2.46 fk-PSO 4.59E�01
DE-APC 2.54 ADE 8.82E�01
ADE 2.57
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fk-PSO, DE-APC, and ADE. The highest average ranking is obtained by the MEABC algorithm. It demonstrates that MEABC is
the best algorithm. The p-values show that MEABC is not significantly better than other algorithms. Although MEABC is
slightly better than fk-PSO, DE-APC, and ADE, MEABC achieves significant improvements on 5 functions f11; f14; f15, f19, and f22.
4.6. Study on the ensemble of multiple solution search strategies

The MEABC employs a new encoding method, in which each food source (solution) consists a position vector ðXiÞ and an
independent solution search strategy ðSiÞ. During the search process, the solution search strategy for each food source is
dynamically adjusted in terms of the quality of new candidate solutions (see Algorithm 1). In this section, we investigate
the effects of the ensemble of multi-strategy.

Initially, the solution search strategy Si for each solution is randomly assigned a strategy SPj, where j 2 f1;2;3g is a ran-
dom integer. Let NSPjðtÞ be the number of jth strategy assigned to the food sources in the population at the tth iterations
ðcyclesÞ. After population initialization, NSP1ð0Þ, NSP2ð0Þ, and NSP3ð0Þ food sources are assigned the original ABC, GABC,
and modified ABC/best/1 solution search strategies, respectively.

In order to study the ensemble of multiple solution search strategies, two series of experiments are conducted. The first
one focuses on investigating the changes of NSPjðtÞ. This helps to recognize the roles of different strategies at different evo-
lutionary stages. The second one calculates the improvement of probability for solution search strategies achieved by differ-
ent ABC algorithms. It aims to compare the efficiency of the ensemble of multi-strategy with a single solution search
strategy. In the experiments, the parameter settings of ABC, GABC, MABC, and MEABC are listed as follows. All these algo-
rithms use the same MAX_FEs (1.5E+05). For other parameters, we use the same values as described in Section 4.2.

Fig. 3 presents the changes of strategies in the population during the search process. As seen, NSP1 is larger than NSP2 and
NSP3 for f1 and f2 at the beginning stage. It means that the original ABC solution search strategy plays an important role in the
current population, and more candidate solutions are generated by this strategy. As iterations increase, more operations are
completed by the modified ABC/best/1 strategy than the original ABC and GABC. For f8, the search prefers to conduct the
GABC and modified ABC/best/1 at the beginning stage. At the middle and last stages, MEABC has converged to the global
optimum, and the strategy for each food source is changed every iteration. Therefore, three strategies have the same chance
to be conducted. For f10, the modified ABC/best/1 strategy generates new candidate solutions with the highest frequency,
(a) Sphere ( f1) (b) Schwefel 2.22 ( f2)

(c) Schwefel 2.26 ( f8) (d) Ackley ( f10)

Fig. 3. The changes of strategies in the population during the search process.
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Fig. 4. The probability of improvement for solution search strategies achieved by the four ABC algorithms.
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while less operations are conducted by the original ABC than the other two strategies. The above results show that three
strategies in MEABC are dynamically changed during the search process. If a solution search strategy can generate better can-
didate solutions than their corresponding parent solutions, more food sources will be assigned this strategy. By the ensemble
of multi-strategy, the strategy selection in MEABC is performed based on the problem characteristics and search status.

Although the first experiment confirms that the strategies assigned to food sources are dynamically changed during the
search process, it does not mean that the ensemble of multi-strategy is better than a single solution search strategy. In the
second experiment, we investigate the probability of improvement for the ensemble of multi-strategy (MEABC) and one or
two strategies (ABC, GABC, and MABC). The probability of improvement (pro imp) is defined by
pro imp ¼ suc num sol
num sol

; ð8Þ
where num sol is the total number of candidate solutions generated by the solution search strategy(s) for a ABC algorithm,
and suc num sol is the number of candidate solutions which are better than their corresponding parent solutions (called suc-
cessful solutions).

Fig. 4 shows the probability of improvement for solution search strategies achieved by ABC, GABC, MABC, and MEABC on
four representative functions. For all algorithms, the initial pro imp is high. As iterations increase, the pro imp is changed
according to the quality of new candidate solutions. MEABC can continue to find better solutions under the predefined max-
imum number of FEs. So, the pro imp of them keep high levels during the whole evolution. Compared to other three ABC
algorithms, MEABC achieves a higher pro imp. It demonstrates that the ensemble of multi-strategy provides more chances
of finding better candidate solutions than using one or two solution search strategies. By the hybridization of two solution
search strategies (the original ABC and ABC/best/1), MABC obtains higher pro imp than ABC and GABC which employ only
one strategy (except for f5 at the last stage of the evolution). It seems that ABC with two or more solution search strategies
are better than that with a single strategy.
5. Conclusions

This paper presents a new ABC algorithm called multi-strategy ensemble ABC (MEABC) to achieve a tradeoff between
exploration and exploitation. In MEABC, a pool of distinct solution search strategies coexists throughout the search process
and competes to produce offspring. Each food source (solution) consists a position vector and an independent solution search
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strategy. Initially, each food source is randomly assigned a solution search strategy from the strategy pool. When searching a
food source, each bee generates offspring according to the assigned strategy of the food source. During the search process,
the strategy for each food source is dynamically changed in terms of the quality of new candidate solutions. In order to verify
the performance of MEABC, a set of numerical benchmark functions are tested in the experiments.

Compared to ABC, GABC, and MABC, MEABC achieves faster convergence speed or more accurate solutions. Compared to
other popular PSO and DE variants, MEABC achieves the highest ranking and outperforms them on the majority of test func-
tions. Although IABC performs better than MEABC, MEABC is simpler and has less control parameters to be tuned. Moreover,
both MEABC and IABC obtain similar performance on complex multimodal problems. Computational results on the CEC 2013
benchmark show that MEABC is competitive to other recently proposed algorithms.

Experimental results confirm that the solution search strategies assigned to food sources are dynamically changed during
the search process. It helps to switch the search behaviors of bees and balance exploration and exploitation. By the ensemble
of multi-strategy, MEABC obtains a higher probability to improve the quality of offspring than ABC with one or two solution
search strategies. It seems that ABC with two or more solution search strategies are better than that with a single strategy.
More solution search strategies will be tried in the future work.

The multi-strategy ensemble method can effectively improve the performance of ABC on continuous optimization prob-
lems. It may also work well on combinatorial optimization problems. This will be another research direction for future work.
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[4] J. Brest, S. Greiner, B. Bošković, M. Mernik, V. Žumer, Self-adapting control parameters in differential evolution: a comparative study on numerical

benchmark problems, IEEE Trans. Evolut. Comput. 10 (6) (2006) 646–657.
[5] S.C. Chu, P.W. Tsai, Computational intelligence based on behaviors of cats, Int. J. Innov. Comput., Inform. Control 3 (1) (2007) 163–173.
[6] L.S. Coelho, H.V.H. Ayala, R.Z. Freire, Population’s variance-based adaptive differential evolution for real parameter optimization, in: Proceedings of

IEEE Congress on Evolutionary Computation, 2013, pp. 1672–1677.
[7] Z. Cui, X. Cai, J.C. Zeng, Y.F. Yin, PID-controlled particle swarm optimization, J. Multip.-Val. Logic Soft Comput. 16 (6) (2010) 585–609.
[8] Z. Cui, X. Gao, Theory and applications of swarm intelligence, Neur. Comput. Appl. 21 (2) (2012) 205–206.
[9] J. Derrac, S. García, D. Molina, F. Herrera, A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary

and swarm intelligence algorithms, Swarm Evolut. Comput. 1 (1) (2011) 3–18.
[10] M. Dorigo, V. Maniezzo, A. Colorni, The ant system: optimization by a colony of cooperating agents, IEEE Trans. Syst., Man Cybernet. – Part B: Cybernet.

26 (1996) 29–41.
[11] W. Du, B. Li, Multi-strategy ensemble particle swarm optimization for dynamic optimization, Inform. Sci. 178 (15) (2008) 3096–3109.
[12] M. El-Abd, Generalized opposition-based artificial bee colony algorithm, in: Proceedings of IEEE Congress on Evolutionary Computation, 2012, pp. 1–4.
[13] S.M.M. Elsayed, R.A. Sarker, T. Ray, Differential evolution with automatic parameter configuration for solving the CEC2013 competition on real-

parameter optimization, in: Proceedings of IEEE Congress on Evolutionary Computation, 2013, pp. 1932–1937.
[14] A.P. Engelbrecht, Heterogeneous particle swarm optimization, in: International Conference on Swarm Intelligence, 2010, pp. 191–202.
[15] H.M. Feng, J.H. Horng, S.M. Jou, Bacterial foraging particle swarm optimization algorithm based fuzzy-VQ compression systems, J. Inform. Hid. Multim.

Sig. Process. 3 (3) (2012) 227–239.
[16] W. Gao, S. Liu, Improved artificial bee colony algorithm for global optimization, Inform. Process. Lett. 111 (2011) 871–882.
[17] W. Gao, S. Liu, A modified artificial bee colony algorithm, Comp. Operat. Res. 39 (2012) 687–697.
[18] W. Gao, S. Liu, L. Huang, A global best artificial bee colony algorithm for global optimization, J. Comput. Appl. Math. 236 (2012) 2741–2753.
[19] S. García, A. Fernández, J. Luengo, F. Herrera, Advanced nonparametric tests for multiple comparisons in the design of experiments in computational

intelligence and data mining: experimental analysis of power, Inform. Sci. 180 (20) (2010) 2044–2064.
[20] S. García, D. Molina, M. Lozano, F. Herrera, A study on the use of non-parametric tests for analyzing the evolutionary algorithms’ behaviour: a case

study on the CEC’2005 Special Session on Real Parameter Optimization, J. Heurist. 15 (2009) 617–644.
[21] F. Kang, J. Li, Z. Ma, Rosenbrock artificial bee colony algorithm for accurate global optimization of numerical functions, Inform. Sci. 181 (6) (2011)

3508–3531.
[22] D. Karaboga, An Idea Based on Honey Bee Swarm for Numerical Optimization, Technical Report-TR06, Erciyes University, Engineering Faculty,

Computer engineering Department, 2005.
[23] D. Karaboga, B. Akay, A comparative study of artificial bee colony algorithm, Appl. Math. Comput. 214 (2009) 108–132.
[24] D. Karaboga, B. Akay, A survey: algorithms simulating bee swarm intelligence, Artif. Intell. Rev. 31 (2009) 61–85.
[25] D. Karaboga, B. Akay, A modified artificial bee colony algorithm for constrained optimization problems, Appl. Soft Comput. 11 (2011) 3021–3031.
[26] D. Karaboga, B. Akay, Artificial bee colony programming for symbolic regression, Inform. Sci. 209 (2012) 1–15.
[27] D. Karaboga, B. Gorkemli, A combinatorial artificial bee colony algorithm for traveling salesman problem, in: International Symposium on Innovations

in Intelligent Systems and Applications, 2011, pp. 50–53.
[28] M.H. Kashan, N. Nahavandi, A.H. Kashan, DisABC: a new artificial bee colony algorithm for binary optimization, Appl. Soft Comput. 12 (1) (2012) 342–

352.
[29] J. Kennedy, R.C. Eberhart, Particle swarm optimization, in: Proceedings of the IEEE International Conference on Neural Networks, 1995, pp. 1942–1948.
[30] G. Li, P. Niu, X. Xiao, Development and investigation of efficient artificial bee colony algorithm for numerical function optimization, Appl. Soft Comput.

12 (1) (2012) 320–332.

http://refhub.elsevier.com/S0020-0255(14)00460-5/h0080
http://refhub.elsevier.com/S0020-0255(14)00460-5/h0085
http://refhub.elsevier.com/S0020-0255(14)00460-5/h0090
http://refhub.elsevier.com/S0020-0255(14)00460-5/h0095
http://refhub.elsevier.com/S0020-0255(14)00460-5/h0095
http://refhub.elsevier.com/S0020-0255(14)00460-5/h0100
http://refhub.elsevier.com/S0020-0255(14)00460-5/h0105
http://refhub.elsevier.com/S0020-0255(14)00460-5/h0110
http://refhub.elsevier.com/S0020-0255(14)00460-5/h0115
http://refhub.elsevier.com/S0020-0255(14)00460-5/h0115
http://refhub.elsevier.com/S0020-0255(14)00460-5/h0120
http://refhub.elsevier.com/S0020-0255(14)00460-5/h0120
http://refhub.elsevier.com/S0020-0255(14)00460-5/h0125
http://refhub.elsevier.com/S0020-0255(14)00460-5/h0130
http://refhub.elsevier.com/S0020-0255(14)00460-5/h0130
http://refhub.elsevier.com/S0020-0255(14)00460-5/h0135
http://refhub.elsevier.com/S0020-0255(14)00460-5/h0140
http://refhub.elsevier.com/S0020-0255(14)00460-5/h0145
http://refhub.elsevier.com/S0020-0255(14)00460-5/h0150
http://refhub.elsevier.com/S0020-0255(14)00460-5/h0150
http://refhub.elsevier.com/S0020-0255(14)00460-5/h0155
http://refhub.elsevier.com/S0020-0255(14)00460-5/h0155
http://refhub.elsevier.com/S0020-0255(14)00460-5/h0160
http://refhub.elsevier.com/S0020-0255(14)00460-5/h0160
http://refhub.elsevier.com/S0020-0255(14)00460-5/h0165
http://refhub.elsevier.com/S0020-0255(14)00460-5/h0170
http://refhub.elsevier.com/S0020-0255(14)00460-5/h0175
http://refhub.elsevier.com/S0020-0255(14)00460-5/h0180
http://refhub.elsevier.com/S0020-0255(14)00460-5/h0360
http://refhub.elsevier.com/S0020-0255(14)00460-5/h0360
http://refhub.elsevier.com/S0020-0255(14)00460-5/h0185
http://refhub.elsevier.com/S0020-0255(14)00460-5/h0185


H. Wang et al. / Information Sciences 279 (2014) 587–603 603
[31] J.J. Liang, A.K. Qin, P.N. Suganthan, S. Baskar, Comprehensive learning particle swarm optimizer for global optimization of multimodal functions, IEEE
Trans. Evolut. Comput. 10 (2006) 281–295.

[32] J.J. Liang, P.N. Suganthan, Dynamic multi-swarm particle swarm optimizer with local search, in: Proceedings of IEEE Congress on Evolutionary
Computation, 2005, pp. 522–528.

[33] J.J. Liang, B.Y. Qu, P.N. Suganthan, A.G. Hernández-Díaz, Problem Definitions and Evaluation Criteria for the CEC 2013 Special Session and Competition
on Real-Parameter Optimization, Computational Intelligence Laboratory, Zhengzhou University, Zhengzhou China and Technical Report, Nanyang
Technological University, Singapore, Tech. Rep. 201212, 2013.

[34] R. Mallipeddi, S. Mallipeddi, P.N. Suganthan, Ensemble strategies with adaptive evolutionary programming, Inform. Sci. 180 (9) (2010) 1571–1581.
[35] R. Mallipeddi, P.N. Suganthan, Ensemble of constraint handling techniques, IEEE Trans. Evolut. Comput. 14 (4) (2010) 561–579.
[36] R. Mallipeddi, P.N. Suganthan, Q.K. Pan, M.F. Tasgetiren, Differential evolution algorithm with ensemble of parameters and mutation strategies, Appl.

Soft Comput. 11 (2) (2011) 1679–1696.
[37] V.J. Manoj, E. Elias, Artificial bee colony algorithm for the design of multiplier-less nonuniform filter bank transmultiplexer, Inform. Sci. 192 (2012)

193–203.
[38] R. Mendes, J. Kennedy, J. Neves, The fully informed particle swarm: simpler, maybe better, IEEE Trans. Evolut. Comput. 8 (3) (2004) 204–210.
[39] E. Mezura-Montes, R.E. Velez-Koeppel, Elitist artificial bee colony for constrained real-parameter optimization, in: IEEE Congress on Evolutionary

Computation, 2010, pp. 1–8.
[40] F.V. Nepomuceno, A.P. Engelbrecht, A self-adaptive heterogeneous pso for real-parameter optimization, in: Proceedings of IEEE Congress on

Evolutionary Computation, 2013, pp. 361–368.
[41] S.N. Omkar, J. Senthilnath, R. Khandelwal, G.N. Naik, S. Gopalakrishnan, Artificial bee colony (ABC) for multi-objective design optimization of

composite structures, Appl. Soft Comput. 11 (2011) 489–499.
[42] Q.K. Pan, M.F. Tasgetiren, P.N. Suganthan, T.J. Chua, A discrete artificial bee colony algorithm for the lot-streaming flow shop scheduling problem,

Inform. Sci. 181 (12) (2011) 2455–2468.
[43] P. Puranik, P. Bajaj, A. Abraham, P. Palsodkar, A. Deshmukh, Human perception-based color image segmentation using comprehensive learning particle

swarm optimization, J. Inform. Hid. Multim. Sig. Process. 2 (3) (2011) 227–235.
[44] A.K. Qin, V.L. Huang, P.N. Suganthan, Differential evolution algorithm with strategy adaption for global numerical optimization, IEEE Trans. Evolut.

Comput. 13 (2) (2009) 398–417.
[45] S. Rahnamayan, H.R. Tizhoosh, M.M.A. Salama, Opposition-based differential evolution, IEEE Trans. Evolut. Comput. 12 (1) (2008) 64–79.
[46] A. Rajasekhar, A. Abraham, M. Pant, Design of fractional order PID controller using sobol mutated artificial bee colony alogrithm, in: International

Conference on Hybrid Intelligent Systems, 2011, pp. 151–156.
[47] A. Rajasekhar, A. Abraham, M. Pant, Levy mutated artificial bee colony algorithm for global optimization, in: IEEE International Conference on Systems,

Man, and Cybernetics, 2011, pp. 655–662.
[48] A. Ratnaweera, S. Halgamuge, H. Watson, Self-organizing hierarchical particle swarm optimizer with time-varying acceleration coefficients, IEEE Trans.

Evolut. Comput. 8 (2004) 240–255.
[49] S.L. Sabat, S.K. Udgata, A. Abraham, Artificial bee colony algorithm for small signal model parameter extraction of MESFET, Eng. Appl. Artif. Intell. 23 (5)

(2010) 689–694.
[50] S. Samanta, S. Chakraborty, Parametric optimization of some non-traditional machining processes using artificial bee colony algorithm, Eng. Appl. Artif.

Intell. 24 (2011) 946–957.
[51] A. Singh, An artificial bee colony algorithm for the leaf-constrained minimum spanning tree problem, Appl. Soft Comput. 9 (2) (2009) 625–631.
[52] M. Sonmez, Artificial bee colony algorithm for optimization of truss structures, Appl. Soft Comput. 11 (2) (2011) 2406–2418.
[53] S. Sundar, A. Singh, A swarm intelligence approach to the quadratic minimum spanning tree problem, Inform. Sci. 180 (17) (2010) 3182–3191.
[54] S. Sundar, A. Singh, A hybrid heuristic for the set covering problem, Operat. Res. 12 (3) (2012) 345–365.
[55] S. Sundar, A. Singh, New heuristic approaches for the dominating tree problem, Appl. Soft Comput. 13 (12) (2013) 4695–4703.
[56] W.Y. Szeto, Y. Wu, S.C. Ho, An artificial bee colony algorithm for the capacitated vehicle routing problem, Euro. J. Operat. Res. 215 (1) (2011) 126–135.
[57] M.F. Tasgetiren, Q.K. Pan, P.N. Suganthan, A.H. Chen, A discrete artificial bee colony algorithm for the total flowtime minimization in permutation flow

shops, Inform. Sci. 181 (16) (2011) 3459–3475.
[58] M.F. Tasgetiren, P.N. Suganthan, Q.K. Pan, An ensemble of discrete differential evolution algorithms for solving the generalized traveling salesman

problem, Appl. Math. Comput. 215 (9) (2010) 3356–3368.
[59] P.W. Tsai, M.K. Khan, J.S. Pan, B.Y. Liao, Interactive artificial bee colony supported passive continuous authentication system, IEEE Syst. J. (2012), http://

dx.doi.org/10.1109/JSYST.2012.2208153.
[60] J. Vesterstrom and R. Thomsen, A comparative study of differential evolution, particle swarm optimization, and evolutionary algorithms on numerical

benchmark problems, in: Proceedings of IEEE Congress on Evolutionary Computation, 2004, pp. 1980–1987.
[61] H. Wang, Z.J. Wu, S. Rahnamayan, Enhanced opposition-based differential evolution for high-dimensional optimization problems, Soft Comput. 15 (11)

(2011) 2127–2140.
[62] H. Wang, S. Rahnamayan, H. Sun, M.G.H. Omran, Gaussian bare-bones differential evolution, IEEE Trans. Cybernet. 43 (2) (2013) 634–647.
[63] H. Wang, H. Sun, C. Li, S. Rahnamayan, J.S. Pan, Diversity enhanced particle swarm optimization with neighborhood search, Inform. Sci. 223 (2013)

119–135.
[64] X.S. Yang, Firefly algorithm, stochastic test functions and design optimization, Int. J. Bio-Insp. Comput. 2 (2) (2010) 78–84.
[65] X. Yao, Y. Liu, G. Lin, Evolutionary programming made faster, IEEE Trans. Evolut. Comput. 3 (2) (1999) 82–102.
[66] W.C. Yeh, T.J. Hsieh, Solving reliability redundancy allocation problems using an artificial bee colony algorithm, Comp. Operat. Res. 38 (2011) 1465–

1473.
[67] A.R. Yildiz, Optimization of cutting parameters in multi-pass turning using artificial bee colony-based approach, Inform. Sci. 220 (2013) 339–407.
[68] E.L. Yu, P.N. Suganthan, Ensemble of niching algorithms, Inform. Sci. 180 (15) (2010) 2815–2833.
[69] Z. Zhan, J. Zhang, Y. Li, H. Chung, Adaptive particle swarm optimization, IEEE Trans. Syst., Man Cybernet. – Part B: Cybernet. 39 (6) (2009) 1362–1381.
[70] S.Z. Zhao, P.N. Suganthan, Q. Zhang, Decomposition based multiobjective evolutionary algorithm with an ensemble of neighborhood sizes, IEEE Trans.

Evolut. Comput. 16 (3) (2012) 442–446.
[71] G. Zhu, S. Kwong, Gbest-guided artificial bee colony algorithm for numerical function optimization, Appl. Math. Comput. 217 (2010) 3166–3173.

http://refhub.elsevier.com/S0020-0255(14)00460-5/h0190
http://refhub.elsevier.com/S0020-0255(14)00460-5/h0190
http://refhub.elsevier.com/S0020-0255(14)00460-5/h0195
http://refhub.elsevier.com/S0020-0255(14)00460-5/h0200
http://refhub.elsevier.com/S0020-0255(14)00460-5/h0205
http://refhub.elsevier.com/S0020-0255(14)00460-5/h0205
http://refhub.elsevier.com/S0020-0255(14)00460-5/h0210
http://refhub.elsevier.com/S0020-0255(14)00460-5/h0210
http://refhub.elsevier.com/S0020-0255(14)00460-5/h0215
http://refhub.elsevier.com/S0020-0255(14)00460-5/h0220
http://refhub.elsevier.com/S0020-0255(14)00460-5/h0220
http://refhub.elsevier.com/S0020-0255(14)00460-5/h0225
http://refhub.elsevier.com/S0020-0255(14)00460-5/h0225
http://refhub.elsevier.com/S0020-0255(14)00460-5/h0230
http://refhub.elsevier.com/S0020-0255(14)00460-5/h0230
http://refhub.elsevier.com/S0020-0255(14)00460-5/h0235
http://refhub.elsevier.com/S0020-0255(14)00460-5/h0235
http://refhub.elsevier.com/S0020-0255(14)00460-5/h0240
http://refhub.elsevier.com/S0020-0255(14)00460-5/h0245
http://refhub.elsevier.com/S0020-0255(14)00460-5/h0245
http://refhub.elsevier.com/S0020-0255(14)00460-5/h0250
http://refhub.elsevier.com/S0020-0255(14)00460-5/h0250
http://refhub.elsevier.com/S0020-0255(14)00460-5/h0255
http://refhub.elsevier.com/S0020-0255(14)00460-5/h0255
http://refhub.elsevier.com/S0020-0255(14)00460-5/h0260
http://refhub.elsevier.com/S0020-0255(14)00460-5/h0265
http://refhub.elsevier.com/S0020-0255(14)00460-5/h0270
http://refhub.elsevier.com/S0020-0255(14)00460-5/h0275
http://refhub.elsevier.com/S0020-0255(14)00460-5/h0280
http://refhub.elsevier.com/S0020-0255(14)00460-5/h0285
http://refhub.elsevier.com/S0020-0255(14)00460-5/h0290
http://refhub.elsevier.com/S0020-0255(14)00460-5/h0290
http://refhub.elsevier.com/S0020-0255(14)00460-5/h0295
http://refhub.elsevier.com/S0020-0255(14)00460-5/h0295
http://dx.doi.org/10.1109/JSYST.2012.2208153
http://dx.doi.org/10.1109/JSYST.2012.2208153
http://refhub.elsevier.com/S0020-0255(14)00460-5/h0305
http://refhub.elsevier.com/S0020-0255(14)00460-5/h0305
http://refhub.elsevier.com/S0020-0255(14)00460-5/h0310
http://refhub.elsevier.com/S0020-0255(14)00460-5/h0315
http://refhub.elsevier.com/S0020-0255(14)00460-5/h0315
http://refhub.elsevier.com/S0020-0255(14)00460-5/h0320
http://refhub.elsevier.com/S0020-0255(14)00460-5/h0325
http://refhub.elsevier.com/S0020-0255(14)00460-5/h0330
http://refhub.elsevier.com/S0020-0255(14)00460-5/h0330
http://refhub.elsevier.com/S0020-0255(14)00460-5/h0335
http://refhub.elsevier.com/S0020-0255(14)00460-5/h0340
http://refhub.elsevier.com/S0020-0255(14)00460-5/h0345
http://refhub.elsevier.com/S0020-0255(14)00460-5/h0350
http://refhub.elsevier.com/S0020-0255(14)00460-5/h0350
http://refhub.elsevier.com/S0020-0255(14)00460-5/h0355

	Multi-strategy ensemble artificial bee colony algorithm
	1 Introduction
	2 Background review and related work
	2.1 Artificial bee colony algorithm
	2.2 ABC variants

	3 Multi-strategy ensemble ABC (MEABC) algorithm
	4 Experimental verifications
	4.1 Test problems
	4.2 Comparison of MEABC with other ABC variants
	4.2.1 Comparison of MEABC with ABC
	4.2.2 Comparison of MEABC with GABC
	4.2.3 Comparison of MEABC with MABC

	4.3 Comparison of MEABC with some recently proposed PSO algorithms
	4.4 Comparison of MEABC with some recently proposed DE algorithms
	4.5 Test on the CEC 2013 shifted and rotated benchmark problems
	4.6 Study on the ensemble of multiple solution search strategies

	5 Conclusions
	Acknowledgment
	References


